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Abstract. An extended tunneling Hamiltonian method is proposed to study the temperature-dependent
tunneling magnetoresistance (TMR) in doped magnetic tunnel junctions. It is found that for nonmagnetic
dopants (Si), impurity-assisted tunneling is mainly elastic, giving rise to a weak spin polarization, thereby
reduces the overall TMR, while for magnetic ions (Ni), the collective excitation of local spins in δ-doped
magnetic layer contributes to the severe drop of TMR and the behavior of the variation of TMR with
temperature different from that for Si-doping. The theoretical results can reproduce the main characteristic
features of experiments.

PACS. 75.70.Pa Giant magnetoresistance – 75.30.Ds Spin waves – 73.23.Hk Coulomb blockade;
single-electron tunneling

1 Introduction

Ferromagnetic (FM) tunnel junctions have triggered great
interest since they were shown to exhibit large tunneling
magnetoresistance (TMR) [1,2]. To find the potential ap-
plication of the systems to magnetic sensors and memory
devices, it is important to consider the various intrinsic
properties affecting magnetoresistance. It was recognized
already decades ago that tunneling electrons can inter-
act with magnetic barrier impurities [3,4], however, so
far, most of theoretical and experimental works only dealt
with the case of no-doping impurities inside the barrier.
Impurity scattering can occur in spin-polarized transport
in standard magnetic junctions, as a result, the magne-
toresistance of the structure consisting of even 100% spin-
polarized materials is also limited.

Experimentally, attentions are mainly focused on the
resulting effect of magnetic [3] and nonmagnetic [5] im-
purities on the total tunnel conductance. Recently, to ac-
quire a complete picture of spin-tunneling in the magnetic
tunneling junctions, Jansen and Moodera [6] employed
a controlled preparation of magnetic tunnel junctions to
uniquely and directly probe the effect of impurity scatter-
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ing on the conductance and tunnel electron polarization.
This was done by using a δ-doped layer with a well-defined
amount of foreign atoms deposited in the form of a thin
sheet of submonolayer thickness in the middle of an Al2O3

tunnel barrier between FM electrodes Co and NiFe. They
found that Si-doping produces an unpolarized, elastic con-
tribution to the conductance, in contrast, Ni-doping ex-
hibits a strikingly different behavior of an inverse TMR
due to spin-exchange scattering.

Theoretically, a method for spin tunneling based on
Schrödinger equation was applied, has been formulated
by Julliere [7] and further developed by Stearns [8] and
Slonczewski et al. [9,10]. Nevertheless, the above works
all disregarded impurity scattering inside the barrier. Al-
though Larkin et al. [11] applied the method to discuss
the impurity scattering, they only considered nonmag-
netic impurities. Also, Appelbaum [4] and Gu et al. [12,13]
used a tunneling Hamiltonian method to account for spin
tunneling.

In this paper, we extend the tunneling Hamiltonian
method, in which spin collective excitation of δ-doped
layer is included for Ni-dopant case, to calculate the TMR
in doped magnetic tunnel junctions. It is found that, for
nonmagnetic dopants (Si), impurity-assisted tunneling is
weakly polarized, and reduces the whole TMR, whereas
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for magnetic dopants (Ni), the spin collective excitation
in the doped magnetic layer is responsible for the much de-
crease of TMR and the behavior of the variation of TMR
with temperature different from that of Si-doping case.
The theoretical results can exhibit the main characteris-
tic features of the experiments [6]. In the next section, we
derive the tunneling model including two electron tunnel-
ing events. In Sections 3 and 4, we calculate the TMRs of
Si-doping and Ni-doping, respectively. Finally, conclusions
are given in Section 5.

2 Tunneling model

The structure of Si (Ni)-doping in the barrier of tun-
neling junction can be regarded as a double-junction
system, where the δ-doping layer is corresponding to
a center electrode. In fact, the doping layer is a small
two-dimensional (2D) island of nanometricsize as pointed
out by references [14] and [15], in which the Coulomb
blockade has a significant effect on the tunneling process.
The energy can be described by an effectively average
level spacing ∆eff [14,15] due to inhomogeneous doping
and it’s effect on the tunneling process is included in
the calculation of conductance. The island charge is
quantized and the electrostatic energy Ec takes discrete
values due to Coulomb blockade. The Hamiltonian of the
double-junction system is

H = H0 + HT (1)

with H0 = H1 + H2 + HC + U and HT = HT1 + HT2 ,
where HC and H1(2) are respectively the Hamiltonians of
the central electrode and the external electrodes, and

U =
Q2

2C
− eV

C
[C1(n2↑ + n2↓) + C2(n1↑ + n1↓] (2)

with Q = e[(n1↑+n1↓)−(n↑2+n2↓)]+Q0, C = C1+C2, and
n↑(↓) = n1↑(↓)−n2↑(↓) the number of excessive electrons in
the central island. Here niσ the number of electrons with
spin σ that have tunneled through the ith junction, and
Q0 describes the potential difference between the central
and external electrodes. The terms HTi = H+

i + H−
i with

H−
i = (H+

i )+ have different expressions for the follow-
ing cases of Si-doping and Ni-doping. Generally, we can
treat HTi as a perturbation. When the conductance Gi

of each junction is smaller than quantance conductance
2e2/π�, the fourth (second nonvanishing) order in HTi [16]
becomes more important for the current involved in this
tunneling process. The second order tunneling process is
a cotunneling one or quantum macroscopic tunneling of
charge, in which a charge is transfered through the island
by the intermediate electron state and virtual increase of
the electrostatic energy of the circuit. By using the same
procedure as that in reference [16], we can obtain similar
formulas of the current

I = e
(
ξ(+) − ξ(−)

)
(3)

with

ξ(+) =
2
�4

∑
p,q=1,2

p�=q

Re
∫ t

−∞
dτ

∫ τ

−∞
dτ ′

∫ τ ′

−∞
dτ ′′

× [exp {−i [E2(t − τ) + eV (t − τ ′) − EP (τ ′ − τ ′′)] /�}

× 〈H−
p (τ ′′)H−

q (τ ′)H+
1 (t)H+

2 (τ)〉

− exp{i[E1(t − τ) − eV (τ − τ ′) − Ep(τ − τ ′′)]/�}

× 〈H−
p (τ ′′)H−

q (τ ′)H+
2 (τ)H+

1 (t)〉] (4)

and

ξ(−) =
2
�4

∑
p,q=1,2

q �=q

Re
∫ t

−∞
dτ

∫ τ

−∞
dτ ′

∫ τ ′

−∞
dτ ′′

× [exp{i[E1(t − τ) − eV (τ − τ ′′) − Ep(τ ′ − τ ′′]/�}

× 〈H+
2 (τ)H+

1 (t)H−
p (τ ′)H−

q (τ ′′)〉

− exp{−i[E2(t − τ) + eV (t − τ ′′) + Ep(τ ′ − τ ′′]/�}

× 〈H+
1 (t)H+

2 (τ)H−
p (τ ′)H−

q (τ ′′)〉], (5)

where Ei, includes Ei0σ = U(niσ + 1) − U(niσ) due to
Coulomb blockade and the energy Eqi of spin collective
excitation in the Ni-doped layer which will be given in
Section 4. According to equation (2), we can easily obtain
Ei0σ, namely,

E10σ =
e2

C

(
n↑ + n↓ +

Q0

e

)
− V (C + C2 − C1)

2e
+ Eσσ′

(6)

and

E20σ =
e2

C

(
−n↑ − n↓ − Q0

e

)
− V (C − C2 + C1)

2e
+ Eσσ′

(7)

with Eσσ′ = ∆eff + e2/2C or e2/2C, where σ and σ′ are
the spins of tunneling and excess electrons in the island,
respectively, and σ′ is the spin opposite to σ′. When the
directions of σ and σ′ are the same, Eσσ′ is taken as
∆eff + e2/2C, otherwise, e2/2C. Here we consider that
the tunneling and excessive electrons with the same spins
are forbidden to stay in the same energy level. As ∆eff

is comparable with e2/2C in our system, the role of ∆eff

becomes very important, which will be shown in the fol-
lowing parts.
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3 Si-doping

First, we calculate the tunneling conductance of Si-doping
in the light of equations (3, 4) and (5). The tunneling
Hamiltonian is

HTi =
∑
αβσ

T
(i)
αβσd+

ασcβσ + h.c., (8)

where d+
ασ(cβσ) is spin σ electron operators of electrodes

including the central electrode. For the case of Si-doping,
in reference [6], it is reported that the weak temperature
dependence of the TMR reduction indicates that the tun-
neling is mainly elastic contunneling one in nature, this
implies that the same electron tunnels through both of
the double junctions as has been pointed in reference [16].
Substituting equation (8) into equation (4), we can get

ξ(+) =
2π

�

∑
m,n,k,l

T
(1)
kmσT

∗(1)
lmσ T

(2)
nkσT

∗(2)
nlσ f(εm)

× [1 − f(εn)]F (εl, εm, εn)F (εk, εm, εn)σ(εm − εn + eV )
(9)

with

F (ε, εm, εn) =
1 − f(ε)

E1 + ε − εm
− f(ε)

E2 − ε + εn
, (10)

where f(ε) is the distribution function of the electrons
in the central electrode (here and below the indices m, n
denote the energy eigenstates of the external electrodes,
while k, l denote those of the central electrode), and
in Ei, we consider that there is only Ei0σ because of
the absence of spin collective excitation for Si-doping.
Similarly, the backward tunneling rate ξ(−) can be
obtained, which is given by equation (9) with V → −V ,
Ei → Ei + eV and εm ↔ εn. We can obtain the
conductance GasP in the parallel (P) magnetization
configuration between the two electrodes, in which
the superscript as denotes impurity-assisted tunneling
in the presence of nonmagnetic impurity inside the barrier

GasP = a1ρLMρRM + a2ρLmρRm (11)

with
a1 = πe2|T |4ρC(1/E10↑ + 1/E20↑)/� and a2 =
πe2|T |4ρC(1/E10↓ + 1/E20↓)/�, where ρM and ρm are re-
spectively the majority and minority densities of state
(DOS) of the external electrodes, and ρC is the DOS
of the central electrode. Here it is an adequate approx-
imation to treat the transfer rate Tαβσ as their average
T [12]. For small voltages, the average of E10σ and E20σ,
Ei0σ = (EC+∆eff )/2 with EC = e2/(C). In Si-doping, the
Bohr radius aB of Si about 102 Å [14,15] is correspond-
ing to the dimensions of the δ-doping layer. As a result,
the effective energy interval ∆eff can be comparable with

the characteristic charging energy EC , which implies that
the effect of ∆eff should be taken into account. For the
antiparallel (A) magnetization configuration, one can sim-
ilarly derive the GasA

GasA = a1ρLMρRm + a2ρLmρRM . (12)

Here it is assumed that in the excessive electrons of the
island, the spins up predominate, i.e., n↑ > n↓. To sim-
plify the expression of equations (11, 12), we assume that
the two electrodes are the same, then an effective spin
polarization due to Si-doping is introduced

P as =
√

ρM − γρm

ρM + γρm
P, (13)

where γ = a2/a1 and P is the spin polarization of the
external electrodes, given by P = (ρM − ρm)/(ρM + ρm).
As a result, GasP and GasA reduce to

Gas = Gas
0

(
1 + P as2 cos θ

)
(14)

with

Gas
0 =

1
2

(ρM + ρm) (a1ρM + a2ρm). (15)

Equation (14) has the same form as that in reference [6].
Here θ is the angle between the magnetization vectors
of the two external electrodes and equals to 0 (π) for
the P(A) magnetization configuration. After expressing
equations (11, 12) as equation (14), we can easily obtain
equations (13, 15). The whole tunneling conductance is
G = Gt + Gas with

Gt = G0[1 + κ + (1 − κ)PLPR cos θ], (16)

where Gt describes the process of direct tunneling includ-
ing spin-conservation and spin-flip for the ordinary fer-
romagnetic tunnel junctions [12,13] and is controlled by
the constant prefactor G0 and κ characters the spin flip
effect [12]. Since n↑ > n↓, it is concluded that from equa-
tions (6, 7), E10↑ > E10↓ > 0, E20↑ < E20↓ < 0, and
E10↑ + E20↑ = E10↓ + E20↓, leading to γ > 1, thus P as

is always smaller than P , this implies that Si-doping pro-
duces a weak spin-polarization, which is consistent with
that in reference [6].

Next, in order to obtain the temperature dependence
of the spin-polarization parameter P in the external elec-
trodes, one needs to have the electron magnetization
M(T ) as a function of temperature, which can be de-
scribed by reference [17] at smaller temperatures relative
to Curie’ temperature Tf ,

M(T ) = Ms

[
1 − µ

(
T

Tf

)3/2
]

, (17)

where µ is a constant determined by concrete magnetic
material and Ms is the saturate magnetization. Then the
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Fig. 1. Electronic spin polarization P versus temperature in
the external electrodes. M(T )/Ms versus temperature shown
in the inset. µ = 0.3, Tf = 580 K, and µBλMs/EF = 0.7.

DOS ρM(m) of the two external electrodes can be ob-
tained as

ρM(m) =
4πV0(2m)3/2

h3

(
EF ± ∆spl

2

)1/2

(18)

with ∆spl = µBλM(T ). Here EF is the Fermi energy, ∆spl

is spin splitting energy, µB is Bohr magneton, and λ is a
constant. Although equation (18) the assumption taken
from reference [13] is coarse, it does not have a significant
effect on the conclusion as was done in reference [13]. In
the light of equations (17, 18), the temperature depen-
dence of the M(T )/Ms and the spin polarization P in
the external electrodes are shown in Figure 1. In the nu-
merical calculation, for simplicity, the external electrodes
are assumed to be the same. We take µBλMs/EF = 0.7,
which is close to that of reference [18]. The parameters Tf

and µ are respectively taken to be 580 K and 0.3. Fig-
ure 1 shows that the spin polarization slowly decreases
with increasing temperature. TMR is generally defined
by as (GP − GAP )/GP . Here the overall TMR is deter-
mined by the relative weight of conductance due to di-
rect, impurity-assisted, and spin-exchange tunneling. For
the case of Si-doping, the spin-exchange tunneling does
not appear. The general expression of TMR is easily de-
duced from equations (14) and (16).

TMR =
2

[
(1 − κ)PLPR + νP as2

]
1 + PLPR + κ(1 − PLPR) + ν

(
1 + P as2

) ,

(19)

where ν = Gas
0 /G0, in which the weights of Gt and Gas

are included. When ν = 0, equation (19) reduces to

TMR =
2(1 − κ)PLPR

1 + PLPR + κ(1 − PLPR)
, (20)

which is just that of the undoped control junction [12].
Since P as < P , one can easily find from equation (19)
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Fig. 2. Calculated TMR ratios versus temperature for the
control case (solid line) and the Si-doping (dotted line). The
parameters are taken to be ν = 0.5 at zero temperature, κ =
0.2, and γ = 1.5 respectively.

that the TMR of the doped junction is smaller than that
of the undoped control junction.

Combining equations (13, 17, 18) and (19), we give the
variation of the TMR with increasing of temperature for
the cases of the undoped control junction and Si-doping
junction in Figure 2. Here κ charactering the spin-flip ef-
fect is taken to be 0.2, which is close to that of refer-
ences [12] and [13] because the effect is always smaller
compared with that of spin-conservation. γ is chosen as 1.5
according to the parameters EC and ∆eff in references [14]
and [15]. We take the ratio ν = 0.5 at zero temperature,
which is reasonable. This is because the weight of impu-
rity tunneling is smaller than that of the direct due to the
small size of the 2D island. Figure 2 shows that the be-
havior of TMR versus T for Si-doping is similar to that of
the undoped control junction, while the value at the same
temperature is reduced. The results are in agreement with
the experimental ones [6].

4 Ni-doping

To explain the zero-bias anomaly, the spin collective ex-
citations localized at the interfaces between the insulat-
ing barrier and the ferromagnetic electrodes have been
introduced in the tunneling theory of ferromagnetic tun-
nel junctions, such as Co/Al2O3/CoFe, using the spin-
wave approximation within the framework of the transfer
Hamiltonian method [19]. For Ni-doping, the central elec-
trode is corresponding to a magnetic layer. Here, we only
consider the spin collective excitation localized at the in-
terfaces between the insulating barrier and the doped layer
to stress the role of Ni-doping.

In the tunneling process of Ni-doping, there are two
cases, one is that the same electron tunnels through the
double tunnel junctions, only including one spin-flip event,
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the other is the different behaviors of two electrons, in-
volving two spin-flip events. The tunneling Hamiltonians,
which are connected with spin-exchange scattering in the
barrier [4], are

HTi =
1√
Ns

∑
kpq

[
T

(i)
kpqSz(q)

(
d+

k↑cp↑ − d+
k↓cp↓

)
+ h.c.

]

+
1√
Ns

∑
kpq

[
T

(i)
kpqS+(q)

(
d+

k↓cp↑ + c+
p↓dk↑

)
+ h.c.

]
.

(21)

Here dkσ(cpσ) is the spin σ electron operator of the
electrodes including the central electrode, Sz

α(q) =
(1/

√
Ns)

∑
j∈I Sz

αj exp(iq · Rαj) and S±
α (q) = (1/

√
Ns)

×∑
j∈I S±

αj exp(±iq · Rαj) with S±
αj = (Sx

αj ± iSy
αj)/2,

α = L or R, Ns is the number of the local spins at the in-
terface between the insulating layer and the doped layer,
and q is the two-dimensional wave vector parallel to the in-
terface. The Hamiltonian means the spin-flip tunneling in-
duced by the collective excitation of the local spins at the
interface, thus the electron tunneling involves the emission
or absorption of the local spin collective excitation.

First, according to equation (4), we calculate the tun-
neling conductance of the case involving one spin-flip
events, which means spin-flip in the whole tunneling pro-
cess. The tunneling Hamiltonian HT in the whole process
is determined by equations (8) and (21). In the following
parts of the paper, we use subscript ex to represent the
tunnel process associated with spin-exchange scattering
in the barrier, and superscripts sf and nsf to stand for
spin-flip and no spin-flip in the whole tunneling process,
respectively. As in Si-doping, we can obtain the conduc-
tance GsfP

ex1 for the P configuration in which E1 and E2

contain the spin collective excitation,

GsfP
ex1 = asf1

1 ρLMρRm + asf1
2 ρLmρRM , (22)

where

asf1
1 = πe2T

(1)
kmT

∗(1)
lm T

(2)
nk T

∗(2)
nl

× ∆eff (x1↑ρCMρCm + x2↑ρCmρCm) /� (23)

and

asf1
2 = πe2T

(1)
kmT

∗(1)
lm T

(2)
nk T

∗(2)
nl

× ∆eff (x1↓ρCmρCm + x2↓ρCmρCM ) /� (24)

with

x1σ =
∑
q1,q2

( 〈Sz(q1)Sz(q1)〉
E10σ

+
1

E20σ

)
(25)

and

x2σ =
∑
q1,q2

( 〈S−(q1)S+(q1)〉
Eq1 + E10σ

+
1

E20σ

)
· (26)

Here the subscript σ means that for the electron of spin σ
tunneling from one external electrode to the central island,

spin-flip is caused by the collective excitation of spin, the
terms ρCM and ρCm are respectively the minority and ma-
jority DOS of the central electrode, and Eq = Dsq

2 + E0

denotes the collective excitation spectrum of local spins for
two-dimensional Heisenberg ferromagnet [20] with Ds the
spin stiffness and E0 the spin gap due to anisotropy in the
δ-doped layer with Ds = D〈Sz〉 in the long-wave length
limit. At low temperatures, we have 〈Sz〉 = S and Ds =
DS [13]. It is well known that transverse correlation func-
tion is given by 〈S−

α (q)S+
α (q)〉 = 2〈Sz

α〉(expEq/kBT −1)−1.
For the longitudinal correlation function, we can use a sim-
ple approximation, given by 〈Sz

α(q)Sz
α(q)〉 ≈ 〈Sz

α〉2. Here
due to the upward magnetization direction of Ni-doping
layer, in the excessive electrons, spins up predominate
more than those in Si-doping. In addition, the effective
energy interval ∆eff is slightly smaller that in Si-doping,
however, the charging energy EC is bigger. The conduc-
tance GsfA

ex1 in the A configuration can be similarly derived.
By introducing an effective spin polarization in the same
way as that in Si-doping with γsf1 = asf1

2 /asf1
1 , GsfP

ex1 and
GsfA

ex1 reduce to

Gsf
ex1 = Gsf1

0 (1 − P sf12
cos θ), (27)

where Gsf1
0 and P sf1 have the same expressions as Gas

0 and
P as in Si-doping.

Next, using equations (3, 4) and (5), we calculate the
tunneling conductance of the case including two spin-flip
events, in which the tunneling Hamiltonian HT in the
whole process is only determined by equation (21). This
case is further classified into two kind of cases.

(1) The directions of spins of the two excessive elec-
trons in the doped layer are the same, which denotes spin-
conserved in the whole tunneling process. Similarly, using
the same way as that in Si-doping, the conductance GnsfP

ex
and GnsfA

ex can be transformed into

Gnsf
ex = Gnsf

0

(
1 + P nsf 2 cos θ

)
, (28)

where P nsf and Gnsf
0 also have the same expressions as

those in Si-doping. In P nsf , γnsf = ansf
2 /ansf

1 with

ansf
1 =

[
χ+

0

(
χ+

1↑ + χ+
2↑

)
− χ−

0

(
χ−

1↑ + χ−
2↑

)]
ρCMρCm

(29)

and

ansf
2 =

[
χ+

0

(
χ+

1↓ + χ+
2↓

)
− χ−

0

(
χ−

1↓ + χ−
2↓

)]
ρCMρCm.

(30)
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TMR =
2
�
(1 − κ)P 2 − η1P

sf12 − η2P
sf22

+ η3P
nsf2

�

1 + P 2 + κ (1 − P 2) + η1

�
1 − P sf12

�
+ η2

�
1 − P sf22

�
+ η3

�
1 + P nsf2

� , (38)

Here

χ+
0 =

2πe2

�

∣∣∣T (1)
km

∣∣∣2∣∣∣T (2)
nl

∣∣∣2 {
1
6
(eV )2 +

2
3
(πkBT )2

}

×
[
1 − exp−eV/(kBT )

]−1

, (31)

χ+
1σ =

∑
q1,q2

1
N2

s

( 〈Sz(q1)Sz(q1)〉
E10σ

+
〈Sz(q2)Sz(q2)〉

E20σ

)2

,

(32)

χ+
2σ =

∑
q1,q2

1
N2

s

( 〈S−(q1)S+(q1)〉
E(q1) + E10σ

+
〈S−(q2)S+(q2)〉
E(q2) + E20σ

)2

,

(33)

χ−
0 , χ−

1σ and χ−
2σ are obtained respectively through χ+

0 ,
χ+

1σ and χ+
2σ with V → −V and Eq → Eq + eV.

(2) The directions of spins of the two excessive elec-
trons in the doped layer are different, this implies spin-
flip in the whole tunneling process. The conductance is
deduced as

Gsf
ex2 = Gsf2

0 (1 − P sf22
cos θ), (34)

where similarly, Gsf2
0 and P sf2 have the same expressions

as those in Si-doping. In P sf2, γsf2 = asf2
2 /asf1

1 with

asf2
1 =

(
χ+

0 χ′+
1↑ − χ−

0 χ′−
1↑

)
ρ2

CM +
(
χ+

0 χ′+
2↑ − χ−

0 χ′−
2↑

)
ρ2

Cm

(35)

and

asf2
2 =

(
χ+

0 χ′+
1↓ − χ−

0 χ′−
1↓

)
ρ2

Cm +
(
χ+

0 χ′+
2↓ − χ−

0 χ′−
2↓

)
ρ2

CM .

(36)

Here the terms χ′+
1σ and χ′+

1σ are determined by equa-
tions (32, 33) with E20σ → E20σ , χ′−

1σ and χ′−
2σ are ob-

tained respectively through χ′+
1σ and χ′+

2σ with V → −V
and Eq → Eq +eV. Therefore, the overall conductance can
be expressed by G = Gt + Gex, where

Gex = Gnsf
ex + Gsf

ex = Gnsf
0 (1 + P nsf 2 cos θ)

+ Gsf1
0 (1 − P sf12

cos θ) + Gsf2
0 (1 − P sf22

cos θ). (37)

It is found that equation (37) has the similar form with
that in reference [6]. The difference is that the spin po-
larization P in reference [6] is replaced by P sf1, P sf2 and
P nsf , respectively. equations (14) and (37) are the main
results in this paper. Finally, the TMR can be obtained

see equation (38) above,

0.0 100.0 200.0 300.0
T (K)

0.00

0.05

0.10

0.15

0.20

T
M

R

Fig. 3. Calculated TMR ratios versus temperature for the
control (solid line) and Ni-doping cases (dotted line). Here D =
320 meV Å2, E0 = 0.35 meV, ρCM/ρCm = 2., and η1 = 0.25
at zero temperature. E10↑, E10↓, E20↑, and E20↓, are taken to
be 2.3, 1.38, −1.84 and −0.92 meV, respectively. The other
parameters are the same as those in Figure 2.

where η1 = Gsf1
0 /G0, η2 = Gsf2

0 /G0, and η3 = Gnsf
0 /G0.

Here the weight of the first case included in η1 and the
sum of the two equal weights of the second case included
in η2 and η3 have been assumed to be the same. Obviously,
η1 and η2, the spin-flip terms, give an inverse contribu-
tion to the TMR, in addition, η1, η2 and η3 vary with
increasing temperature, which result in that the varia-
tion of the TMR with temperature in the doped junction
is different from that in the undoped. Combining equa-
tions (18, 27, 28, 34), and (38), we can obtain the variation
of the TMR as a function of temperature in Figure 3. The
material parameters D = 320 meV Å2 and E0 = 0.35 meV
used in numerical calculation are respectively taken to be
their measured values [15,20,21]. In addition, in the light
of the parameters EC and ∆eff in references [14] and [15],
E10↑, E10↓, E20↑, and E20↓, are taken to be 2.3, 1.38,−1.84
and −0.92 meV, respectively. Generally, ρCM and ρCm of
the 2D island hardly have no change with temperature.
η1 at zero temperature is taken to be 0.25, which is also
rational and has the same reason as that for Si-doping.
We have chosen ρCM/ρCm = 2 [19]. It is found that the
TMR has a severe drop and goes up significantly faster
than that for the control junctions, which are consistent
with the experimental results [6]. In addition, we find the
variation of the ratio of magnetic to Fermi energy does
not exhibit an important effect on the conclusion both for
Si-doping and Ni-doping.
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5 Conclusion

We have proposed the mechanism of the temperature-
dependent tunneling magnetoresistance (TMR) in doped
magnetic tunnel junctions. Using an extended trans-
fer Hamiltonian method, we show that for Si-doping,
impurity-assisted tunneling is mainly elastic, giving rise to
a weak spin polarization, thus reduces the overall TMR,
while for magnetic ions (Ni), the collective excitation in δ-
doped magnetic layer plays an important role in the much
decrease of the TMR and the different behavior of the
variation of the TMR with temperature. The theoretical
results are consistent with those of the experiments.

This work was supported by the National Science Foundation.
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